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 Nonlinear conjugate gradient (CG) methods are widely used in optimization 

field due to its efficiency for solving a large scale unconstrained optimization 

problems. Many studies and modifications have been developed in order to 

improve the method. The method is known to possess sufficient descend 

condition and its global convergence properties under strong Wolfe-Powell 

search direction. In this paper, the new coefficient of CG method is 

presented. The global convergence and sufficient descend properties of the 

new coefficient are established by using strong Wolfe-Powell line search 

direction. Results show that the new coefficient is able to globally converge 

under certain assumptions and theories. 
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1. INTRODUCTION  

Conjugate gradient (CG) method is used in finding the minimum value for unconstrained 

optimization problem. This method can be expressed in general form such; 

 

 )(min
nx

xf
R

                    (1) 

 

where RRf n : is a continuously differentiable nonlinear function. )(xg  is denoted as a gradient of the 

function. Equation (1) can be solved by using several methods such Steepest Descent and Newton method 

but CG method is the most preferred due to its simplicity [1]. The nonlinear CG method generates a sequence 

of  kx by using the recurrence; 

 

 ,...2,1,0,1  kdxx kkkk                     (2) 

 

where kx is the current iterative point and nRx 0 is set to be a starting point of the sequence. From (2), 

0k is known as a step size and kd is the search direction defined by the rule: 
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The most common technique in inexact line search used widely is strong Wolfe-Powell line search,  

where 0k satisfies 
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with 10    are both constants. Distinct choice of the parameter k yields different numerical 

performance. Past study has shown at least six formulae for k , which are given as follows; 
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From (5)-(10), kg and 1kg  are the abbreviations of )( kxg and )( 1kxg which are the gradients of 

)(xf at points kx and 1kx  respectively.  denotes the Euclidean norm of the vectors. From (5)-(10), the 

above corresponding methods are respectively called as HS [2], FR [3], PRP [4], CD [5], DY [6], and lastly 

RMIL denotes for Rivaie, Mustafa, Ismail and Leong [7]. Zoutendijk [8] has proved the FR method in (6) to 

be globally converged under exact line search on a general function [9]. After that, [10] extended the result 

under strong Wolfe-Powell line search. A new modification of a conjugate gradient method is presented but 

it did not prove the global convergence under inexact line search though it has possess global convergence 

properties under exact line search [7&11]. The strong Wolfe-Powell line search is considered due to the 

higher cost of exact line search [12]. 

 In this paper, a new coefficient with more simple k is proposed. Section two will elaborate the 

motivation of the coefficient together with the algorithm. Section three will discuss and prove the sufficient 

descend condition and global convergence properties. Finally, conclusion and recommendation for future 

study are wrapped up at section four. 

 

 

2. NEW CG COEFFICIENT 

The new CG coefficient introduced is known as
SMR
k . 

SMR
k is motivated mainly from [7] where 

the denominator is retained as same as in (10). Whilst, the nominator in (10) is given as  1 kk
T
k ggg  which 

is as same as used in (5) and (7). During expansion, the nominator becomes 1 k
T
kk

T
k gggg which implies
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 k
T
kk ggg . Choosing the right nominator is important due to its role as a restart property in avoiding 

problems associated with jamming, [13-14]. Preventing any negative value, modifications has been made 

[15]; hence the new CG coefficient and the simplified version are as follows; 
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Before proceeds with more details steps, SMR
k needs to be simplified; 
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Algorithm 2.1: Conjugate Gradient Method 

A complete algorithm of CG method could be generated as follows:  

Step 1: Initialization. Set 0k  and select
nx 0 , 00 gd  , if 00 g , stop.  

Step 2: Based on (11), compute
SMR
k  . 

Step 3: Compute search directions kd based on (3).  If kg , then stop. Otherwise, go the next step. 

Step 4: Based on (4), solve for k  .  

Step 5: Updating new initial point using (2). If )()( 1 kk xfxf   and kg  then, stop. Otherwise go to 

Step 3 with 1 kk . 

 

 

3. THEORETICAL ANALYSIS  

This section discussed and analysed the sufficient descent property for the new coefficient under 

strong Wolfe-Powell line search direction. Before proceed, let assume that 0kg  for all k  or else, the 

stationary point has been found. For any iterative method to be globally convergent, it is important to suffice 

its descent property, that is; 

 

0k
T
k dg . 

 

3.1. Sufficient Descent Property 

Before proceed, let assume that 0kg for all k or else, the stationary point has been found. For any 

iterative method to be globally convergent, it is important to suffice its descent property, that is; 

 

 
2

kk
T
k gcdg               (13) 

 

where c is a positive constant, is crucial to ensure the global convergences of the nonlinear conjugate 

gradient method under strong Wolfe-Powell line search direction [16]. Sufficient descent property is 

important to show that the function )(xf can be reduces along the search direction. The proving steps below 

are modified from [11-12]. 

 

Theorem 3.1 

If kg and kd are generated by algorithm 2.1 with
25

6
 , then, for all 0k , it becomes;  
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Proof 

The proving steps are performed by inductions. For 0k and
3

5
1

0

0


d

g
, hence (14) holds for 0k . 

Suppose for some 0k , (14) holds true. Rearrange (3) and multiplying it with
T
kg 1 , then 
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From strong Wolfe-Powell condition and absolute values properties in (4), expression (15) becomes; 
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SMR
k then 
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By using Cauchy inequalities and substituting (12) in (17),  
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Implies; 
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Applying the induction hypothesis in (14),  
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Therefore, if
25
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 , then .
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Hence, (14) is true for 1k . The proof is completed. 

 

3.2. Global Convergence Properties 

The following assumption is needed in order to proceed with the proof of global convergence 

properties. The proof modifications are from [11-12,17-19] 

Assumption 4.1 

1) f is bounded below on the level set nR and is continuous and differentiable in a neighborhood N of the 

level set  )()(| 0xfxfRx n  at the initial point 0x . 

2) The gradient )(xg is Lipschitz continuous in N , so there exists a constant 0L such that; 

 

yxLygxg  )()(  Nyxanyfor ,           (21) 

 

From (11) and (13), 
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Theorem 4.2 

Suppose that Assumption 4.1 holds. Consider any CG method in the form of (2) and (3) where k is 

obtained from (4). If the descend condition holds, then; 
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Proof 

To prove Theorem 4.2, contradiction method is used. That is, if Theorem 4.2 is not true, then there 

exists a constant 0 , such that; 

 

kg            (24) 

 

Rewriting (3) as kkkk dgd 111    and squaring both sides the equation; 
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From (22), if 0k
T
k dg , then; 
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Divide (26) by 
4

1kg and from (13), 
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Suppose that (23) does not hold, then there exists 0 such that (24) holds for all 0k  
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Also, from (22), if 0k
T
k dg , then,   
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From (28) and (29), this shows that (23) holds. The proof is completed. 
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4. CONCLUSION 

By taking a little modification at RMIL
k in (10), a new coefficient SMR

k of the conjugate gradient 

method has been proposed. Results showed that the new coefficient satisfy the sufficient descent conditions 

and converge globally under strong Wolfe-Powell line search. It is proved that the algorithm is practical and 

effective to be used. Following with the proving provided, the coefficient will be tested on certain test 

function for future study. 
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