
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 12, No. 3, December 2018, pp. 995~1002

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i3.pp995-1002 995

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Efficient H.264 Decoder Architecture Using External Memory

and Pipelining

G.R. Poornima1, S C Prasanna Kumar2
1Dept. of E & CE, Sri Venkateshwara College of Engineering, Bangalore

2Dept. of Electronics & Instrumentation Technology, R V College of Engineering, Bangalore

Article Info ABSTRACT

Article history:

Received Apr 30, 2018

Revised Jul 14, 2018

Accepted Aug 21, 2018

 A H.264 standard is one of the most popular coding standard with significant

improvement in video broadcasting and streaming application. However it’s

significant in compression but needs huge calculation and complex algorithm

for providing better image quality and compression rate. In H.264 coding

technique, designing of decoder is a key factor for efficient coding. In this

paper we are designing a decoder using a complex input. We ensured several

improvement like looping arrangement, buffer upgradation, buffer

supplement, memory reusability and pipelining architecture. We have

modified the memory structure also. Our designed decoder achieves a better

frame decoding efficiency against state-of-art methods. The proposed

approach also provides good area optimization with a maximum frequency of

355 MHz.

Keywords:

H.264 decoder

Pipelining architecture

Memory reusability

Luma/Chroma
Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

G.R. Poornima,

Dept. of E & CE,

Sri Venkateshwara College of Engineering, Bangalore.

Email: poornima_g_r@yahoo.com

1. INTRODUCTION

H.264 is a most broadly used standard for video coding with significant improvement in video

broadcasting, video streaming and optical disc. It is established by JVT (Joint video Team) of ITU-T and

ISO/IEC and also known as MPEG-4 part 10 advance video coding. Most of the bits transmitted wirelessly in

a communication networks uses MPEG-4 part 10 advanced video coding (AVC). H.264 video coding

comprises high compression efficiency, so it is most frequently used in video coding. It has some new

features including inter-prediction, intra prediction, variable block size and context-based adaptive entropy

coding [1]. These all new feature needs complex compression algorithm and huge calculations to provide

better image quality and compression rate. H.264 coding technique involves source code from different

domain like computational physics, computer science and machine learning approach, which makes complex

source code and challenges in synthesis. The complexity of the H.264 decoder is increased lot compare to

MPEG-4 decoder.

Usually a H.264 decoder contains a pipelining architecture of 4*4 sub block. The data processing

time and the complexity of each stage of pipelining architecture depends on the type of data and decoding

methods. The timing of each stages should be known, so that the stages which requires more processing time

can be normalized by efficient decoder architecture. An efficient decoder architecture can idealize all the

time consuming stages by reducing the complexity up to certain level.It is observed by run time analysis that

the motion compensation (MC) uses 55% of the decoding time. So, it’s a crucial factor in designing a

decoder architecture [2-3] considering performance. Reading pixel data with less complexity can increase the

performance of the decoder. H.264 decoders usually have three units. One is the MC unit discussed above,

second is the deblocking filter unit and the last is data out unit which helps in transferring image data on

display device.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 3, December 2018 : 995 – 1002

996

The size of code, complexity of data structure and function hierarchy should be limited as much as

possible. There are different methodologies, which affects the efficiency of decoder. Some researchers

followed bottom-up methodologies which includes block level design along with system-level designing.

Whereas some researchers followed top-down methodologies which includes the whole function as a single

unit. There is also difference between HLS generated hardware and standalone hardware. So, the different

methodologies uses in different goal and application. A complex application may be more effective with

approaches that breaks the code piecewise and optimize each piece of code where as a simple application

may require more methods to get effective.so, it’s completely depends to purpose of application.

To reduce the memory scope, several optimization are done by researchers. Some of the HEVC

hardware interpolation is presented in [4-7], where they have compared different techniques. In their

approach, they did not used memory based implementation. In [4], they have implemented three different 8-

tap FIR filter by using a configurable path, which can evaluate single filter output at a time. Due to this

reason, it can be used for only motion compensation. In [5], the presented hardware design uses multiplier

less constant multiplication (MCM) approach for multiplying with constant factor in [6-7], they have used

adders and shifters for generating FIR filters.

In this paper we have demonstrated H.264 video coding with its real application and the types-of

complexity which we face on top down approaches. Designing of decoder core is very important in fast and

power efficient decoding. Many online platform like YouTube and Facebook using h.264 technique for video

coding. Popular manufacturing company like apple and snapdragon also uses H.264 video coding for their

processors. This paper includes that how we are improving the design process and what difficulties we are

facing while designing a decoder. We synthesized the code, optimized the code and achieved a throughput

which outperforms the state-of-art techniques.

This paper is organized as following way. In section 2 we have demonstrated a brief related work of

designing a decoders. In Section 3, an overview of H.264 decoder is presented. Section 4 describes our

proposed optimization techniques of designing a H.64 decoders. The performance and result evaluation is

shown in Section 5. In last section we conclude our paper.

2. RELATED WORK

HLS tools much hyped to achieve prototyping and rapid designing of hardware in register transfer

level. J. Andrade et al [8] has proved this claim by using a complex application designing, which implements

low-density parity-check (LDPC).HLS tool can help user to explore large space designing into multiple small

designing, which make its productivity high. HLS tool can also explore micro architecture of the generated

design. LDPC decoders are developed by using this HLS tools only, which has an average throughput.

S. Baldev et.al [9] has developed an efficient 5-stage pipelining architecture of daglocking filter for

design of HEVC decoder. The luma/chroma samples are applied vertically on edge filters of the designs to

get maximum throughput and minimizes the number of clock cycle. This proposed architecture is developed

in FPGA and ASIC platform using 90-nm technique. The result of this propose architecture shows that the

UHD videos are decoded at 200fps.

F. Leduc-Primeau et.al [10] has developed a design approach, known as quasi-synchronous design

approach .LDPC decoder allows timing violation, which is modified through proper modeling by HLS. The

new designed circuits can provide same performance with same area constraint but having an energy

reduction of 32%.

Designing of Node Processing Units in LPDC decoder [11] is very important for both hardware

resources and processing experiences. NPU architectures supports decoder in keeping low hardware

utilization with maximum operating frequency. The synthesis outcome proves the hardware efficiency for

proposed architecture.

T. Mallikarachchi et.al [12] has proposed a framework to reduce the complexity of decoding. By

reducing the complexity of decoder, they have reduced the energy consumption during media playback. They

also improved in bit-rate and video quality by designing this framework.

H. Kim et.al [13] has developed an efficient architecture of HEVC for supporting ultra-high

definition content by multicore implementation. In standard HEVC technique there is issue of data

dependencies, which makes it inefficient for parallel processing. The novel architecture of memory

organization solves the problem of data dependencies and makes its efficient for parallel processing. They

have implemented de-blocking filter with skip mode pipelining to achieve high performance of throughput.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Efficient H.264 Decoder architecture using External Memory and Pipelining (G.R. Poornima)

997

3. H.264 STANDARD VIDEO DECODING

A H.264 standard has a number of profiles, which covers different encoding features, frame rates

and resolutions. Thus, it’s mandatory to define the profile, while designing a decoder, so that, they will

support for that specific profile. In this paper, we are designing a decoder for the main profile, normally used

in standard video streaming and broadcasting.

Input of the decoder is an encoded YUV video containing color spaced pixels, where Y represents

luminance whereas U and V represents chrominance component. Human eyes are more sensitive to

brightness than colors, for this reason chrominance data is considered for improving encoding efficiency.

In H.264 standard, video is encoded frame wise, where I-frames are encoded without any

information of past and future frames. Encoding of P-frame requires information of previous frame whereas

encoding of B-frame requires information of past frame as well as future frames also. Encoded video is

stored in form of bit stream. File format of encoded video provides information about each frame’s type. A

H.264 input file format is shown in Figure 1.

Figure 1. Structure of H.264 encoded file

SPS and PPS unit of input file (frame) contains information regarding decoding parameters and

frame size. IDR unit of the input file is the first slice where frame is further divided into macro blocks. Each

of the slice header having basic information of slice like slice identifier, number of macro blocks,

quantization factor and frame configuration.

A Decoder gets compressed bit-stream from the encoded input file where entropy decoder decodes

the input bit stream into a set of quantized coefficient. The residual image information can be obtained by

using inverse quantization and inverse transformation unit. The combined information of residual data, pre-

decoded data and prediction information is utilized in final decoded image.

In this paper, we mainly focus on getting higher resolution decoded image with a high frame rate.

For this purpose we need to consider a design process, where we implement the parameterized buffer for

temporary storage solution. A H.264 video decoder functional block diagram along with intra prediction unit

is shown in Figure 2.

Figure 2. H.264 Decoder functional block diagram

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 3, December 2018 : 995 – 1002

998

4. IMPROVED H.264 DECODER WITH SIMULATION ARCHITECTURE

In this section we will discuss about the unique designing and methodology to get improved

implementation of H.264 decoder. We are mainly concentrating on difficulties in performing to designing a

module, which can decode our video frame efficiently. In total designing process, a use case has considered

for the hardware module which includes requirement verification, code writing and iterative source

optimization with single function or multiple function along with system level optimization. The simulated

architecture of H.264 decoder is shown in Figure 3. The architecture shows the connectivity of external

memory with shared bus and interface unit.

Figure 3. Simulated H.264 decoder architecture

4.1. Improved Synthesis Process

In this section we will start improving the application iteratively by improving the code. We will

first improving the design for area minimizing by implementing maximally parallelize and pipelining

architecture. Though, this architecture cannot be used in complex application, because applying global

parallelization makes area cost too high. Due to this reason, we should more selective in optimizing area and

optimizing performance in complex application.

We have written our code by the help of Xilinx ISE tool in Verilog hardware description language.

It’s a tool which gives environment to develop the design code, synthesize the code and simulate the

developed design code.

4.1.1 Building Individual Function

We start building every individual function in a fashion, which helps in getting performance on call.

We have divided all single function into groups and performed several enhancement. We concentrated more

on performance optimization rather than area optimization.

4.2. Memory Reusability with Pipelining Architecture

In order to make memory references efficient in reference software CPU implementation is a key

factor. The hardware implementation of shared memory might be expensive, even in case of local BRAM

block also, which may cause a performance bottleneck of the system. Thus, by applying splitted individual

register or small local data array reusability can be an important factor in system performance. The decision

of splitting registers or small local data array implementation depends on three factors. First, the functions

which involved in array should be significant function individually. Second thing the functions which are

involved in array should have data-parallelism and memory port limitation should not be there. The last thing

is the implementation of BRAM. The reducing BRAM can be more effective than preventing the register use.

This strategy is applied in our design implementation. But, if the local buffer size is not completely

partitioning feasible, in that case we create an additionally local buffers which can be reused efficiently. In

our code, in each iteration we read 5-6 overlapped data items where only one data item is new. Therefore, by

creating local buffer we read a new data in each iteration.

Till now, improvement is done for efficiency and memory reusability by low level function calling.

Now, we can further improve our system for area constraints. A pipelining architecture helps a lot in

improving performance as well as significant area optimization. We have pipelining based on the number of

iterations to improve further performance of the system along with area optimization.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Efficient H.264 Decoder architecture using External Memory and Pipelining (G.R. Poornima)

999

4.2.1 Improving Through Cross Function Examination

We start developing function sequences any analyzed their importance in application. In descending

order of significance, we can improve the leaf function sequence, which is more effective in enhancing

important call sequences. Profiling data is updated and there after we find out the different sequences of

function calls. These function call might be the improved leaf function or other several function including

call stack. Each function latency is analyzed along with the number of calls on call stack. This data helps us

in finding critical path in call stack.

4.2.2luma and Chroma Parallel Data Flow Design

Figure 4 demonstrates the Luma and Chroma parallel data path unit, where buffers are utilized.

Weight predictor estimates the weight for both Luma and Chroma data samples where data is stored in small

buffers. Average sum of the predicted weight, buffer data and individual predicted weight is applied to

multiplexer for finalizing the output.

Figure 4. Luma-Chroma Data flow design

4.3. Looping Rearrangement and Function Inlining

There are some factors, which can stop the pipelining completely in loop. The control flow of the

loop may degrade the performance by applying conditional check in each loop iteration. Due to these reason,

we reorder every loop where optimization of both the latency is needed considering the pipelining suitability.

During single function optimization, it has been found in several cases, that there is a need of

function inlining for both latency and area optimization. But it is not necessary that there is always a

significant benefit of specialization would be there by function inlining. Due to duplication of resources, a

tradeoff is there between function call overheads and increased area. By implementing inlining tool, we can

achieve universally inline or we can prevent inlining of a function. In our case, we tried to get maximum

benefit in each call site. However, in some cases it is beneficial only after inlining a subset of frequently used

function call sites.

After identifying important positions of potential saving, we implemented function inlining. Using

profile data and call site positions, it is observed that the significance of all call sites for candidate function.

We open multiple alternative option of inlining directives which helps in finding latency saving and area

cost, But we have finalized inline choices by inlining manually for the implemented function.

Buffer upgradation

As we discussed earlier, in improving of single function buffer role is very significant to execute

parallelism algorithm. Initially, we start from local buffer insertion to improve single leaf function. Here, we

are not considering the places, where to define the buffer for getting maximum benefit of parallelization

during the call stack. We just evaluate the individual buffer to define in call stack. Buffer can affect

parallelism of sub-functions at higher level of call stack, but at the same time it leads complexity in inter-

block edges, which experiences overhead while copying form global edges. In this situation, a confliction

comes in sharing of potential data, because multiple sub-functions reuses same buffer. We analyze the call

stack of each local buffer and try to define it earliest places, where overhead is minimum and sub function

gets maximum benefit during parallelism.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 3, December 2018 : 995 – 1002

1000

4.4. System Level Parallel Processing

Once call stack improvement is done, we improved every single function along with the important

sequence of function in call stack. Now instead of optimizing less significant function, we start optimizing

data buffering and data transportation across different portions of decoder, which is not directly connected

with function call stack.

After data optimization we find out top-level dependencies in profiling data, which helps in finding

data dependency between buffers of top level function in call stack.

4.4.1 Buffer Supplement and Task Level Parallelism

As we discussed earlier, the input data stream is complex, so after call stack and local buffer

insertion, the external data evaluation is critical factor in performance evaluation. That’s why we want to

develop a core system, which should be independent from target resolution, where some part of memory can

be accessed through external bus for data transfer rather than using local memories. Moreover, implemented

local buffer are well optimized for parallelism in local function. So, there is no need of having facilitate

reusing throughout call state region.

By using the statistics of profile information, critical function is determined and clustering is

developed for function call graph. Additionally, with the help of this clustering, a local data array is created

for system-level, which is comparatively large and used by directly or indirectly. Directly use of this larger

data can be possible when, there is no need of substantial parallelism whereas indirectly use of data can be

possible by copying data into next level of buffer. Copying of data into next level buffer may experiences

overhead, but it protects from latency produce by localization and reusability. Later we find out those sub

function, which implements local buffer based on the observation of their buffering necessity and processing

time.

In our designing process, we have optimized first individual function or call sequences and ignored

task-level parallelism. Later we considered, task-level parallelism by implementing two methods which are

(a) Buffer duplication and (b) interface duplication. We use buffer duplication method in case of using input

data by multiple function whereas interface duplication method in case of partitioning data into two or more

group accessed individually by function.

4.5. Runtime Memory Allocation

In order to minimize the memory allocation problem H.264 uses a dynamic memory allocation. In

our use-case also, we have used dynamic memory allocation for internal buffers which will convert in

parameterized static allocations. The usage of dynamic memory allocation depends on the size of the input

file resolution. It’s not good to design a decoder which will support only one maximum resolution. To

overcome this problem, we have to redesign our model for each target case resolution which increases

optimization challenges. A large amount of input buffer converts into top level memory interfaces, which

will use for memory banks. It might need of transferring data using memory interface. That’s why we

optimizing kernel’s without considering the video resolution.

5. RESULT AND ANALYSIS

We used Xilinx VCU1525 development kit as a synthesizable software for optimization of each

intermediate stage of designing. We performed on-board verification using Omnitek Zynq 7000. ARM CPU

is utilized for data travelling while Zynq acts as a standalone FPGA.

Vivado 2015.2 tool is applied to determine the occupied area and operating frequency for each

design process. In order to measure performance of input video files and the corresponding board-level

application, simulation has performed in H.264 video file. H.264 video file follows a repeating pattern like

one frame is I-frame, next is P-frame and then B-frames and again P-frame. The latency of decoded frame

depends on data for almost all frame type. We try to find out the worst case latency (maximum latency) of

each frame type in each cycle. A weighted average is performed twice for B-frames compare to I or P frames.

Later, the average latency of each cycle is multiplied with obtain frequency to check the average latency got

per frame. Moreover, we have used Intel core i5-2310 CPU (2.9GHz) to complete the required modification.

Because, our core design is independent of resolution, we tested our design with multiple resolution

like QCIF 144p and 480p of input files. We estimated system performance for different resolutions. We also

covered the average latency for per micro block of the system. We have compared our performance with

different pre-developed H.264 implementation.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Efficient H.264 Decoder architecture using External Memory and Pipelining (G.R. Poornima)

1001

5.1. Performance Evaluation and Analysis

We synthesized our design and evaluate performance while treating with QCIF input videos. At

each optimization stage, occupied area is presented with performance for corresponding synthesized

implementation. By implementing single function improvement, a little area gets optimized but it also

improves the CPU performance, which indicates reusing function is well organized. Though, optimization of

cross-function with the help of local buffer making the pipelining more effective rises performance

excellently. The area depends primarily on FF, DSP and LUT units and SRAMs are utilized mainly in

system-level buffer but rarely used in local buffers. Optimization in system level configuration makes the

performance low in CPU level depicts a deviation in our desire result. In final step of parallelization, we

achieve good throughput.

However, our simulation process do not design a memory bandwidth at system level. H.264 system

requires a lot of computation process, so, it should not be a memory bounded application. In experiment,

Xilinx kintex-7 FPGAs is demonstrated to get a good area optimization with maximum frequency.

Table 1. The number of luma and chroma intra prediction unit comparison is depicted
Design LUT FF

luma [14] 545 127

luma[15] 212 37

luma [proposed] 83 284

chroma[14] 216 59

chroma[15] 163 33

chroma [proposed] 284 105

Table 2. Comparison of H.264 decoders with other H.264 decoders and HEVC decoders are shown
 Our

proposed

work

ESSCIRC

14[16]

ISSCC

13[17]

ASSCC

13[18]

ISSCC

12[19]

VLSI 10 [

20]

ISSCC 10[

21]

Work done[

22]

Video-

format

H.264 HEVC +

Multi-

format

HEVC

WD4

HEVC H.264 H.264 H.264 HEVC

On-Chip

SRAM

102.5

KB

154KB 124KB 10.2KB 79.9KB 59.6KB 9.0KB 396KB

Logic gates 190k 3454k 715k 446k 1338k 662k 414k 2887k

technology 28nm/

0.9v

28nm/

0.9v

40nm/

0.9v

90nm/

01.0v

65nm/1.2

v

90nm/

1.0v

90nm/

1.09v

40nm/

1.0v

Clock rate 355

MHz

350

MHz

200

MHz

224

MHz

340

MHz

175

MHz

210

MHz

300

MHz

DRAM

config

DDR3L 32bLPDD

R3

32bDDR3 n/a 64bDDR2 64bDDR1 n/a 64bDDR3

6. CONCLUSION

This paper shows an efficient designing of an h.264 decoder with its intra prediction unit (luma and

chroma). For this process, we have used Xilinx VCU1525 development kit with on board verification using

ARM CPU. By using runtime memory allocation, individual function improvement and cross function

verification, we have achieved complete improvement in designing. This improvement provides good area

optimization with maximum frequency of 355 MHz. We have used different block types for intra prediction

unit to reduce the area cost of the decoder. By applying various improvement, we have achieved a great

throughput.

REFERENCES
[1] L. V. Agostini, A. Azevedo, W. Staehler, V. Rosa, B. Zatt, A. C. Pinto, R. E. C. Porto, S. Bampi, A. Susin, "Design

and FPGA Prototyping of a H.264/AVC Main Profile Decoder for HDTV", Journal of the Brazilian Computer

Society, vol. 12, pp. 25-36, 2007.

[2] D. Indoonundon, T. P. Fowdur, K. M. S Soyjaudah, “A Concealment Aware UEP Scheme for H.264 using RS

Codes”, Indonesian Journal of Electrical Engineering and Computer Science(IJEECS) Vol. 6, No. 3, June 2017, pp.

671 ~ 681 DOI: 10.11591/ijeecs.v6.i3.pp671-681.

[3] Chuan-Yung Tsai, Tung-Chien Chen, To-Wei Chen and Liang-Gee Chen, "Bandwidth optimized motion

compensation hardware design for H.264/AVC HDTV decoder," 48th Midwest Symposium on Circuits and Systems,

2005., Covington, KY, 2005, pp. 1199-1202 Vol. 2. doi: 10.1109/MWSCAS.2005.1594322

[4] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A Reconfigurable HEVC Sub Pixel Interpolation Hardware”, IEEE Int.

Conference on Consumer Electronics - Berlin, Sept. 2013.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 3, December 2018 : 995 – 1002

1002

[5] E. Kalali, I. Hamzaoglu, “A low energy HEVC sub-pixel interpolation hardware,” IEEE Int. Conference on Image

Processing, pp. 1218-1222, Oct. 2014.

[6] Mengmeng Zhang, Jianfeng Qu, Huihui Bai, “Fast Intra Prediction Mode Decision Algorithm for HEVC”,

TELKOMNIKA Indonesian Journal of Electrical Engineering, Vol. 11, No. 10, October 2013, pp. 5703 ~ 5710

ISSN: 2302-4046.

[7] C. M. Diniz, M. Shafique, S. Bampi, J. Henkel, “A Reconfigurable Hardware Architecture for Fractional Pixel

Interpolation in High Efficiency Video Coding,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, vol. 34, no. 2, pp. 238-251, Feb. 2015.

[8] J. Andrade et al., "Design Space Exploration of LDPC Decoders using High-Level Synthesis," in IEEE Access, vol.

PP, no. 99, pp. 1-1. doi: 10.1109/ACCESS.2017.2727221

[9] S. Baldev, K. Shukla, S. Gogoi, P. Rathore and R. Peesapati, "Design and Implementation of Efficient Streaming

Deblocking and SAO Filter for HEVC Decoder," in IEEE Transactions on Consumer Electronics, vol. PP, no. 99,

pp. 1-1.

doi: 10.1109/TCE.2018.2812518

[10] Zhao Han, M.R. Anjum, “A New Low-Costing QC-LDPC Decoder for FPGA”, TELKOMNIKA Indonesian Journal

of Electrical Engineering Vol. 12, No. 11, November 2014, pp. 7721 ~ 7727 DOI:

10.11591/telkomnika.v12i11.6512.

[11] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi and L. Hanzo, "Hardware-Efficient Node Processing Unit

Architectures for Flexible LDPC Decoder Implementations," in IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. PP, no. 99, pp. 1-1. doi: 10.1109/TCSII.2018.2807362

[12] T. Mallikarachchi, D. S. Talagala, H. K. Arachchi and A. Fernando, "Decoding-Complexity-Aware HEVC

Encoding Using a Complexity-Rate-Distortion Model," in IEEE Transactions on Consumer Electronics, vol. PP, no.

99, pp. 1-1. doi: 10.1109/TCE.2018.2810479

[13] H. Kim, J. Ko and S. Park, "An Efficient Architecture of In-Loop Filters for Multicore Scalable HEVC Hardware

Decoders," in IEEE Transactions on Multimedia, vol. PP, no. 99, pp. 1-1 doi: 10.1109/TMM.2017.275950

[14] F. Palumbo et al., “Runtime energy versus quality tuning in motion compensation filters for HEVC,” in Proc. of the

PDeS Conf., 2016.

[15] C. Sau et al. ”Challenging the Best HEVC Fractional Pixel FPGA Interpolators with Reconfigurable and

Multi-frequency Approximate Computing IEEE Embedded Systems Letters” 2017.

[16] C.-C. Ju et al., “A 0.2 nJ/pixel 4K 60 fps Main-10 HEVC decoder with multi-format capabilities for UHD-TV

applications,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2014, pp. 195–198.

[17] C.-T. Huang, M. Tikekar, C. Juvekar, V. Sze, and A. Chandrakasan, “A 249 Mpixel/s HEVC video-decoder chip for

quad full HD applica-tions,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 162–

164.

[18] C.-H. Tsai, H.-T. Wang, C.-L. Liu, Y. Li, and C.-Y. Lee, “A 446.6K-gates 0.55–1.2V H.265/HEVC decoder for next

generation video appli-cations,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2013, pp. 305–308.

[19] D. Zhou, J. Zhou, J. Zhu, P. Liu, and S. Goto, “A 2 Gpixel/s H.264/AVC HP/MVC video decoder chip for Super Hi-

Vision and 3DTV/FTV applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San

Francisco, CA, USA, Feb. 2012, pp. 224–225.

[20] D. Zhou et al., “A 530 Mpixels/s 4096 × 2160@60 fps H.264/AVC high profile video decoder chip,” in Proc. Symp.

VLSI Circuits (VLSI), Honolulu, HI, USA, 2010, pp. 171–172.

[21] T.-D. Chuang et al., “A 59.5 mW scalable/multi-view video decoder chip for quad/3D full HDTV and video

streaming applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 330–331.

[22] D. Zhou et al., "An 8K H.265/HEVC Video Decoder Chip With a New System Pipeline Design," in IEEE Journal of

Solid-State Circuits, vol. 52, no. 1, pp. 113-126, Jan. 2017. doi: 10.1109/JSSC.2016.2616362.

